Parallel tree-projection-based sequence mining algorithms

نویسندگان

  • Valerie Guralnik
  • George Karypis
چکیده

Discovery of sequential patterns is becoming increasingly useful and essential in many scientific and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand efficient, scalable, and parallel algorithms. Even though a number of algorithms have been developed to efficiently parallelize frequent pattern discovery algorithms that are based on the candidategeneration-and-counting framework, the problem of parallelizing the more efficient projection-based algorithms has received relatively little attention and existing parallel formulations have been targeted only toward shared-memory architectures. The irregular and unstructured nature of the task-graph generated by these algorithms and the fact that these tasks operate on overlapping sub-databases makes it challenging to efficiently parallelize these algorithms on scalable distributed-memory parallel computing architectures. In this paper we present and study a variety of distributed-memory parallel algorithms for a tree-projection-based frequent sequence discovery algorithm that are able to minimize the various overheads associated with load imbalance, database overlap, and interprocessor communication. Our experimental evaluation on a 32 processor IBM SP show that these algorithms are capable of achieving good speedups, substantially reducing the amount of the required work to find sequential patterns in large databases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Formulations of Tree-Projection Based Sequence Mining Algorithms

Discovery of sequential patterns is becoming increasingly useful and essential in many scientific and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand efficient, scalable, and parallel algorithms. Even though a number of algorithms have been developed to efficiently parallelize frequent pattern discovery algorithms that are based on the...

متن کامل

Parallel Formulations of Tree-Projection-Based Sequence Mining Algorithm

Discovery of sequential patterns is becoming increasingly useful and essential in many scientific and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand efficient, scalable, and parallel algorithms. Even though a number of algorithms have been developed to efficiently parallelize frequent pattern discovery algorithms that are based on the...

متن کامل

Parallel Tree Projection Algorithm for Sequence Mining

Discovery of sequential patterns is becoming increasingly useful and essential in many scienti c and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand e cient and scalable algorithms. In this paper we present two parallel formulations of a serial sequential pattern discovery algorithm based on tree projection that are well suited for dis...

متن کامل

Dynamic Load Balancing Algorithms for Sequence Mining

Discovery of sequential patterns is becoming increasingly useful and essential in many scienti c and commercial domains. Enormous sizes of available datasets and possibly large number of mined patterns demand e cient and scalable algorithms. In this paper we present a parallel formulation of a serial sequential pattern discovery algorithm based on tree projection that uses a novel dynamic load ...

متن کامل

Scalable Data Mining for Rules

Data Mining is the process of automatic extraction of novel, useful, and understandable patterns in very large databases. High-performance scalable and parallel computing is crucial for ensuring system scalability and interactivity as datasets grow inexorably in size and complexity. This thesis deals with both the algorithmic and systems aspects of scalable and parallel data mining algorithms a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Parallel Computing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2004